Petróleo Brasileiro S.A- Ênfase 7: Ciência de Dados (Módulo Especial) (Pré-edital)
Sobre o curso
Última atualização em 12/2025
Satisfação garantida ou seu dinheiro de volta!
Você poderá efetuar o cancelamento e obter 100% do dinheiro de volta em até 7 dias.
Aqui, no Gran, é satisfação garantida ou seu dinheiro de volta.
1. Curso baseado no edital nº 1 – PETROBRAS/PSP RH 2021.
2. Serão abordados os tópicos relevantes (não necessariamente todos) a critério do professor.
3. Carga horária prevista: 460 videoaulas, aproximadamente.
4. Material de apoio personalizado:
- audioaulas
- slides para acompanhamento das videoaulas.
5. Não serão ministrados: Conhecimentos Específicos: BLOCO I: 1.14 Aprendizado supervisionado com Python scikit-learn. 2.6 Aprendizado não supervisionado com Python scikit-learn. 3.7 Redes neurais com Python: treino de modelos com Keras e Pytorch. BLOCO II: 2.7 Manipulação de dataframes com Python Pandas: leitura de dados tabulares, seleção de linhas e colunas, agregação de dados, preenchimento de valores faltantes, remoção de duplicados, junção de dataframes. BLOCO III: 1 Cálculo. 1.1 Précálculo: Conjuntos, Coordenadas Cartesianas, Cônicas e Produtos Notáveis. 2 Álgebra Linear para Ciência de Dados. 2.1 Notação de vetores e matrizes. 2.2 Operações com vetores e matrizes; produto escalar e produto vetorial. 2.3 Matriz identidade, inversa e transposta. 2.4 Transformações lineares.2.5 Normas (L1, L2). 2.6 Autovalores e autovetores. 2.7 Decomposição SVD. 2.8 Álgebra linear e operações matriciais com Python Numpy. 3.3 Distribuições multidimensionais; matriz de covariância.
6. Informamos que, visando à melhor compreensão e absorção dos conteúdos previstos no seu Edital, as videoaulas referentes a determinadas disciplinas foram organizadas com base na lógica didática proposta pelo(a) docente responsável e não de acordo com a ordem dos tópicos apresentada no conteúdo programático do certame.
AULAS EM PDF AUTOSSUFICIENTES:
1. Conteúdo produzido por docentes especializados e com amplos recursos didáticos.
2. Material prático que facilita a aprendizagem de maneira acelerada.
3. Exercícios comentados.
4. Não serão ministrados em PDF: Conhecimentos Específicos: 1.1 Métricas de avaliação. 1.3 Regularização. 1.4 Seleção de modelos: Erro de Generalização. 1.5 Validação Cruzada. 1.6 Conjuntos de Treino, Validação e Teste. 1.7 Trade off entre Variância e Viés. 1.10 Máquina de suporte de vetores. 1.13 Ensembles. 1.14 Aprendizado supervisionado com Python scikit-learn. 1.15 Conceitos de otimização de hiperparâmetros. 2.1 Redução de dimensionalidade: PCA. 2.2 Agrupamento K-Means. 2.3 Mistura de Gaussianas. 2.4 Agrupamento Hierárquico. 2.5 Regras de associação. 2.6 Aprendizado não supervisionado com Python scikit-learn. 3 Redes neurais artificiais. 3.1 Conceitos Básicos em Redes Neurais Artificiais: Definições e Arquitetura. 3.2 Funções de Ativação. 3.3 Otimização de Redes Neurais Artificiais: método do gradiente, método do gradiente estocástico, algoritmo backpropagation, métodos de inicialização dos pesos, Vanishing Gradients. 3.4 Métodos de regularização: penalização com normas L1 e L2, Dropout e Early Stopping. 3.5 Definições básicas de Redes Neurais Convolucionais. 3.6 Definições básicas de Redes Neurais Recorrentes. 3.7 Redes neurais com Python: treino de modelos com Keras e Pytorch. BLOCO II: 1 Machine learning aplicado. 1.1 Noções de Visão computacional com redes neurais convolucionais. 1.2 Classificação de imagens. 1.3 Detecção de objetos. 1.4 Segmentação de objetos e instâncias. 1.6 Stopwords, stemização e n-grams. 1.7 TF-IDF. 1.8 Modelagem de tópicos (LDA, NMF). 1.9 Word embeddings: CBOW e Skip Gram. 1.10 Conceitos Básicos em Séries Temporais. 2 Manipulação, tratamento e visualização de dados. 2.1 Técnicas de visualização de dados (questão 1/2). 2.2 Técnicas de visualização de dados (questão 2/2). 2.3 Lidando com valores faltantes. 2.4 Lidando com dados categóricos. 2.5 Normalização numérica. 2.6 Detecção e tratamento de outliers. 2.7 Manipulação de dataframes com Python Pandas: leitura de dados tabulares, seleção de linhas e colunas, agregação de dados, preenchimento de valores faltantes, remoção de duplicados, junção de dataframes. 3.6 Conceitos gerais de Hadoop: HDFS, MapReduce, YARN e Spark. 3.7 Armazenamento orientado a objeto (object store). BLOCO III: 1 Cálculo. 1.1 Précálculo: Conjuntos, Coordenadas Cartesianas, Cônicas e Produtos Notáveis. 1.2 Funções. 1.3 Limites. 1.4 Derivadas. 1.5 Derivadas parciais. 1.6 Máximos e Mínimos. 1.7 Esboços de Gráficos de Funções. 1.8 Integrais. 2 Álgebra Linear para Ciência de Dados. 2.1 Notação de vetores e matrizes. 2.2 Operações com vetores e matrizes; produto escalar e produto vetorial. 2.3 Matriz identidade, inversa e transposta. 2.4 Transformações lineares. 2.5 Normas (L1, L2). 2.6 Autovalores e autovetores. 2.7 Decomposição SVD. 2.8 Álgebra linear e operações matriciais com Python Numpy. 3 Probabilidade e estatística. 3.1 Conceitos de Probabilidade: Modelo de probabilidade, Probabilidade Condicional, Independência, Variáveis Aleatórias, Esperança, Variância e Covariância. 3.2 Distribuições Contínuas e Discretas: Normal, t-Student, Poisson, Exponencial, Binomial, Dirichlet. 3.3 Distribuições multidimensionais; matriz de covariância. 3.4 Estatísticas Descritivas. 3.5 Inferência Estatística: Teorema do Limite Central, Teste de Hipótese e Intervalo de Confiança, Estimador de Máxima Verossimilhança, Inferência Bayesiana. 3.6 Coeficiente de correlação de Pearson. 3.7 Histogramas e curvas de frequência. 3.8 Diagrama boxplot. 3.9 Avaliação de outliers. 4 Estrutura de dados. 4.1 Complexidade de algoritmos e notação assintótica (Big O). 5 Conceitos modernos de sistemas de informação. 5.2 Conceitos de Containers: construção, registro, execução e orquestração. 5.3 Conceitos básicos de DevOps: versionamento com git, pipeline e CI/CD.
5. Não serão ministrados PDFs Sintéticos.
Sobre o concurso
Última atualização em 12/2025
Garantia de devolução do dinheiro em 7 dias.